LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - MATHEMATICS

FIRST SEMESTER - November 2009
MT 1501 - GRAPHS, DIFF. EQU., MATRICES \& FOURIER SERIES

Date \& Time: 12/11/2009 / 1:00-4:00
Dept. No. Max. : 100 Marks

PART - A

Answer ALL questions.
($10 \times 2=20$ marks)

1. Find the domain of the function $\frac{x^{2}-3 x-2}{x^{2}+x-6}$.
2. If $f: R \rightarrow R$ is defined by $f(x)=2 x+5$, Find f^{-1}.
3. Write the normal equations of $y=a x+b$.
4. Reduce the equation of the form $y=a+b x+c x^{2}$ to linear law.
5. Form the difference equation of lowest order by eliminating the arbitrary constants a and b from $y=(a+b x) 2^{x}$.
6. Solve $y_{n+2}-y_{n+1}+y_{n}=0$.
7. Define row matrix and give an example.
8. Find the characteristic equation of $\left(\begin{array}{cc}3 & 1 \\ -1 & 2\end{array}\right)$.
9. Find the Fourier coefficient \mathbf{a}_{n} for the function $f(x)=e^{x}$ in $(-\pi, \pi)$.
10. Define periodic function and give an example.

PART - B

Answer any FIVE questions.
11. The total cost in Rs. Of output x is given by $C=\frac{2}{3} x+\frac{35}{2}$. Find
(i) The cost when the output is $\mathbf{4}$ units.
(ii) The average cost of output of $\mathbf{1 0}$ units.
(iii) The marginal cost when the output is 3 units.
12. The cost function for producing x units of a product is $C=x^{3}-12 x^{2}+48 x+11$ (in rupees) and the revenue function is $R=83 x-4 x^{2}-21$. Find the output for which the profit is maximum.
13. Find a straight line fit of the form $y=a x+b$, by the method of group averages for the following data.

\mathbf{x}	$\mathbf{0}$	$\mathbf{5}$	$\mathbf{1 0}$	$\mathbf{1 5}$	$\mathbf{2 0}$	$\mathbf{2 5}$
\mathbf{y}	$\mathbf{1 2}$	$\mathbf{1 5}$	$\mathbf{1 7}$	$\mathbf{2 2}$	$\mathbf{2 4}$	$\mathbf{3 0}$

14. Explain the method of least squares.
15. Solve the difference equation $y_{n+2}-2 y_{n} \cos \alpha+y_{n-1}=0$.
16. Find the eigen values and eigen vectors of $\left(\begin{array}{lll}1 & 2 & 3 \\ 0 & 2 & 3 \\ 0 & 0 & 2\end{array}\right)$.
17. Verify Cayley Hamilton theorem for the matrix $\left(\begin{array}{ccc}2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right)$.
18. Obtain the Fourier expansion for $f(x)=(\pi-x)^{2}$ in the interval $(-\pi, \pi)$.

PART - C

Answer any TWO questions.

$$
(2 \times 20=40 \text { marks })
$$

19. (a) From the table given below, find the best values of a and b in the law $y=a e^{b x} b y$ the method of least squares.

\mathbf{x}	$\mathbf{0}$	$\mathbf{5}$	$\mathbf{8}$	$\mathbf{1 2}$	$\mathbf{2 0}$
y	$\mathbf{8 8}$	$\mathbf{8 7}$	$\mathbf{8 1}$	$\mathbf{7 8}$	$\mathbf{7 4}$

(b) Suppose that the price and demand for an item are related by $p=150-6 x^{2}$, the demand function where p is the price and x is the number of items demanded (in hundreds). The price and supply are related by $p=10 x^{2}+2$, the supply function where x is the supply of the item (in hundreds). Draw the graph and find the equilibrium demand and equilibrium price.
20. Solve the difference equations:
(a) $y_{n+2}-6 y_{n+1}+8 y_{n}=4^{n}$
(b) $y_{n+2}+y_{n+1}-56 y_{n}=2^{n}\left(n^{2}-3\right)$.
21. (a) Obtain the cosine series for $x \sin x$ in the interval $(0, \pi)$.
(b) Find a Fourier series expansion for the function $\boldsymbol{f}(\boldsymbol{x})=\left\{\begin{array}{l}-1 \text { for }-\pi<x<0 \\ 1 \text { for } 0 \leq x \leq \pi\end{array}\right\}$.
22. Diagonalize the matrix $\left(\begin{array}{ccc}-9 & 4 & 4 \\ -8 & 3 & 4 \\ -16 & 8 & 7\end{array}\right)$.

